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Bosonic realisation of sp(4, R) and the spectrum of two-particle 
quantum systems 

R A Tello-Llanos 
Centro de Fisica, IVIC, Apdo 21827, Caracas 1020-A, Venezuela 

Received 10 October 1988 

Abstract. A new bosonic Holstein-Primakoff-type realisation of sp(4,R) is applied in the 
development of ‘l/ N ’  expansions of non-relativistic spin-independent two-particle Hamil- 
tonians. As a non-trivial example, the spectrum of helium-like ions is considered and the 
energies of the low-lying levels with given values of total angular momentum are computed. 
The calculation is explicitly performed in an approximation up to the second degree in 
the small expansion parameter. 

1. Introduction 

The relevance of the non-compact real symplectic Lie algebras sp(2d, R) in the study 
of the non-relativistic spin-independent many-particle quantum systems is widely 
recognised after the works of Mlodinow and Papanicolaou [ 1,2]. These authors first 
introduced a Holstein-Primakoff -type [3] realisation of the irreducible representations 
of the algebras mentioned. In [ 11 the case d = 1 was fully analysed. The case d = 2 
was partially developed in [2], where the representations associated with zero angular 
momentum states of two-particle systems were considered. During the subsequent 
years, much work was done in obtaining bosonic realisations for the more general 
cases, and new physical applications were proposed [4-71. 

In the present paper, the method of Mlodinow and Papanicolaou will be extended 
in order to include states with arbitrary angular momentum of two-particle quantum 
systems. It will be done on the basis of a new bosonic Holstein-Primakoff-type 
realisation of the representations of sp(4, R) associated with given values L of the 
total angular momentum. This realisation was recently obtained by the present author 
[8]. Other realisations accessible from the literature are not appropriate for the 
mentioned extension due to the lack of analyticity and explicitness. 

The general formulation is developed in 0 2. As a non-trivial application, the 
non-relativistic Hamiltonian of helium-like ions is considered in 0 3. There, the energy 
of the low-lying states with given angular momentum L are computed in an approxima- 
tion which includes the second order in the small expansion parameter. Some remarks 
of general order are mentioned in the conclusions. For convenience, many of the 
formulae are presented in the appendices. 

2. The ‘UN’ expansion 

The present approach can be applied to every non-relativistic spin-independent two- 
particle quantum system with a rotationally invariant Hamiltonian. However, it will 
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be enough to consider the sufficiently typical and interesting class of Hamiltonians 
proposed by Mlodinow and Papanicolaou [2]: 

H = j ( p 2 +  P') + 2vg2[(r2+ R 2 + 2 r  - R ) "  + (r2+ R2 -2r  * R)"] - 2ve2(4r2)" (1) 

where 

r = f ( r ,  - r2) 

P =PI - P 2  p = P l + P 2  

R = f( rl + r2) 

are the centre-of-mass coordinates of the two interacting particles, which have equal 
masses normalised to unity. The parameters g, e, v, as well as the space dimension 
N, are taken to be arbitrary for the moment. For physical space N = 3. 

Let us introduce the operators 

which are the creation and annihilation operators of an auxiliary set of harmonic 
oscillators, associated with the Schrodinger operators (2). The parameters w and R 
will be determined below. 

As is well known, due to the Bose commutations relation between the operators 
vir and tit, i = 1,2,  t = 1,2 , .  . . , N, the following operators generate the Lie algebra 
SP(4, RI: 

N N 
(4) 

Using the identities 

p 2 = w ( C 1 , - ; B l l - f B : , )  

r2=  w - ~ ( c ~ ~ + ~ B ~ ~ + ~ B : ~ )  
P2 = R( c,, - fB22 - f$,) 
R2 = Cl- ' (  C22 + f B 2 2  + fB;2)  ( 5 )  

2 r - R = ( w Cl)-1/2( CI2 + C21 + B ,  + BT2) 

the Hamiltonians ( 1 )  can be written as a function of the sp(4, R )  generators. 
The states with fixed angular momentum L span a basis of an irreducible representa- 

tion of sp(4, R ) ,  as was shown by Moshinsky and Quesne [9, 101 applying their notion 
of complementarity of Lie groups to the chain Sp(4N, R )  2 Sp(4, R )  x O( N ) .  In fact, 
computing the second-order Casimir invariant of Sp(4, R )  with generators (4), it follows 
that [2, 1 1 1  

( 6 )  
Here, L ( L +  N - 2) are the eigenvalues of the angular momentum operator L2 (in N 
dimensions) and s, q are the parameters introduced by Evans [12] in order to classify 
the irreducible representations of so(3,2) - sp(4, R )  in a separable Hilbert space. 

From ( 6 ) ,  a systematic account of the irreps with given values L of angular 
momentum can be obtained choosing 

L(L+ N -2) = ~ S ( S  + 1 )  +2q(q - 3 )  - f N ( N  - 6 ) .  

q = s + f N  = &( N + L). (7) s = f L  
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If N k 3, such values of parameters s, q belong to one of the discrete series discussed 
by Evans. The bosonic realisation of this series of irreps was given in [8] and is 
reproduced in appendix 1 for completeness. Here it can only be mentioned that the 
representation space is spanned by the state vectors 

I V l ,  v2, OOb, 8) (8) 
where {I v l  , v 2 ,  l ) ,  v, , v 2 ,  1 = 0, 1 ,2 ,  . . . } is an orthonormal basis for the Weyl algebra 
w(3), prametrised by the eigenvalues of the occupation number operators N ,  = b:b,, 
a = 1 ,  2, 3, of three independent bosonic oscillators, and {Is, S ) ,  S = -s, -s+ 1 ,  . . . , s} 
is a standard basis of su(2), whose generators will be denoted by SI ,  S 2 ,  S 3 .  On such 
a space the operators ( 5 )  can be put in the form 

P 2  = w ( b ,  - q,)(b:- 41) 

r2 = w - l (  b, + SI)(  b: + q l )  

p 2  = a ( b2 - 42) ( 6: - q 2 )  

R2 = a-’( b2 + q 2 ) (  6: + q 2 )  ( 9 )  

2r R = b, + q 1 ) [ ( b 2 +  q2)b :F+  S+( b: + q2)G] + HC 

where HC stands for Hermitian conjugation, S ,  = SI f is2, and the Hermitian operators 
q , ,  q 2 ,  F, G, are given in appendix 1,  where their explicit dependence on parameter 
q can be seen. 

Now, introducing the realisation (9) in the Hamiltonian ( l ) ,  an expansion in powers 
of parameter x = q-”2 = [2/( N + ~ 5 ) ] ” ~  can be performed: 

(10) 
The operator H ( - ’ )  comes out linear in the operators 6, + b: and b2+ b: and can be 
set equal to zero with the choice of parameters U, as the positive solutions of the 
algebraic equations 

H = x - 2 H ( - 2 ) + x - 1 H ( - l ) + H ( 0 ) + x H ( ~ ) + X 2 H ( 2 ’ +  . . , . 

where the rescaled parameters S2 = g 2 x 2 ( 1 - ” ) ,  P 2  = e 2 x 2 ( 1 - u )  were introduced. Up to the 
redefinition of the expansion parameter this result was given by Mlodinow and 
Papanicolaou [2]. With this choice of w and R, the leading term becomes 

H ( - 2 ’ = ( w + a ) ( l +  Y ) / 4 Y  (12) 

H“’= ~ 1 2 + ~ 3 + t ( ~ - a ) S 3  (13) 

and the following ‘Gaussian’ approximation is 

where 

Hl2=wb:bl  +flb:b2+ Kl(bl+ b:)’+ K2(b2+ b:)2+ KIz(b,+ b:)(b,+ b:) (14) 

(15)  H3 = &b:b3 + K3( b3 + b:)2 
and 

K1 = ( Y - l ) ( w 2 +  w f l  -i2’)/8(w +a) 
K 2 =  ( U -  l )wfl /8(w+fl)  (16) 

E = ( w  + a ) / 2 .  

K12 = K3 = ( v - 1)a2/4(w +Cl) 

The following two terms H‘”, 
computation of the first non-trivial correction to the ‘Gaussian’ approximation. 

are given in appendix 2 and will be used in the 
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The diagonalisation of H‘O’ is straightforward by means of a canonical transforma- 
tion b l ,  b2,  b3 + a, p, y, which, for completeness, is given in appendix 3. Now the 
Hamiltonian is transformed to 

(17) H = EoL+ Ala+a + A2p’p + A 3 y + y + f ( u  -a)( S3 - S )  + xH‘”+ x ’ H ( ~ ) +  . . . 
where EOL is the ‘Gaussian’ approximation to the energy of the low-lying level with 
given angular momentum L, represented (in this approximation) by the state 10,0,0)0 
Is, s), s = LI2, 

(U+R)( l+U)  
4x2 U 

+;(A, + A 2  + A3) -$(U +a) +$(U - f l ) ~ .  EO‘ = 

The values of the frequencies A , ,  A 2 ,  A 3  are those given by Mlodinow and Papanicolaou 
P I :  

A:,2 =f[f l ( f l+4K2) + w ( w  +4K,)  TA’”] 

A:=&(&+4K3) 

A =  [fl(fl+4K2)-w(o+4K,)]2+ 16wflKt2. 

The first correction to the ‘Gaussian’ approximation is obtained with the effective 
Hamiltonian 

Hee= H o + x ( H ‘ ” + x H ‘ 2 ’ )  (20) 
where Ho = x - ~ H ‘ - ~ ) +  H‘O’, and all the operators are transformed to the new variables 
a, p, y. Then the perturbative theory must be applied up to the second order in the 
small parameter x, giving 

for the energies of the low-lying states with angular momentum L. 
eigenstates of H ~ .  In particular, 

calculation of these energies is presented. For the other excited states the computation 
can be realised in a similar manner. Further, and more realistic, approximations could 
require more complicated iterative computation, but as direct as discussed in this paper. 

= IO, O,O)&IS, s). 
In the following section, for the particular case of helium-like 

(21) 

Here IE) are the 

ions, the explicit 

3. Low-lying levels of helium-like ions 

With the choice U = - i, the Hamiltonian (1) describes the non-relativistic behaviour 
of helium-like ions. In atomic units ( e 2  = 1) the rescaled coupling constants become 

p 2 =  - 
( N 2 f  L) l i2  

- 
( N :  L)3’2 

where Z is the strength of nuclear charge. As was shown by Mlodinow and 
Papanicolaou, the unique positive solution of (1 1) is 

w =  ( N : L ) 3 7 )  - fl= ( N :  - L ) I H  

7) = [ a ( .  -2)]-2 H=(a- l ) [a(a-2)]-2 

CY = [64Z2 - 1 + (1 + 12822)’/2]/2( 162* - 1). 
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Rescaling the frequencies h l  , h 2 ,  h3 as 
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(24 )  

the effective Hamiltonian (20 )  takes the form 

N + L  N + L  

where s = L / 2 ,  

and h"', h"' ha ve the same form as H"', H"' but the parameters w,  Cl, A I ,  h2, h3 
were replaced by 77, H, 7 1 ,  712, 7 7 3 .  

The computation of the energies using (21) gives, for Z = 2 , 3 , .  . . , 8 ,  the values 

1 2 T l ( y ) + T 2 + T 3 L + ( Z ) ( T 4 + T 5 L + T 6 L 2 )  N + L  
N + L  

with the quantities Tl, , . . , T6 presented in table 1. 
Setting N = 3, the expression (27)  corresponds to the energies of the low-lying 

states of the helium-like ions in each angular momentum sector, in an approximation 
of the second order in the small expansion parameter [2/(3 + L)]'". For L= 0 the 
numerical values coincide exactly with those given by Mlodinow and Papanicolaou [ 2 ] .  

Table 1. Numerical values in the expression of the energies E,  for He-like ions. 

2 2.7378 3.0288 0.2529 2.2155 4.6346 -0.0724 
3 7.0321 7.4477 0.4268 5.5896 8.5463 -0.1353 
4 13.3257 13.8712 0.6021 10.4389 14.1634 -0.1999 
5 21.6190 22.2958 0.7780 16.7831 21.3250 -0.2652 
6 31.9122 32.7208 0.9542 24.6255 30.0036 -0.3308 
7 44.2053 45.1460 1.1305 33.9670 40.1905 -0.3966 
8 58.4984 59.5712 1.3070 44.8081 51.8821 -0.4626 

4. Conclusions 

The expansion method based in the application of the bosonic realisation of sp(4, R )  
can, in principle, be developed for Hamiltonians which are arbitrary functions of the 
rotational invariants ( 5 ) .  In the particular cases considered above, the first few terms 
give a relatively good approximation for the low-lying states in each angular momentum 
sector. More accurate results, and the extension to other excited states, require the 
consideration of additional terms of the expansion. The same could also be desirable 
for the analysis of the convergence problem. 
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Extensions to more complex systems, with say three or more particles, could be 
developed on the basis of the representation of more general Lie algebras s p ( 2 4  R ) .  
However, to the best of my knowledge, explicit and analytic realisations of these 
algebras are not available at the present. The known results require numerical computa- 
tion at some stage. 

Appendix 1. Bosonic Holstein-Primakoff-type realisation of sp(4, R )  

In the following N ,  = bTb,, a = 1,2,3, are the occupation number operators of three 
independent bosonic oscillators, and SI ,  S2,  S3 are the generators of a su(2) algebra, 

CI1 = q + 2N1+ N3 + s3 ( A l . l )  

Cl2= qlbZb:F+ Fb,b:qz+qlS+qZG+ GbTbzS- (A1.2) 

4 1  = 2blql B22 = 2b242 (A1.3) 

B12= bIbzb:F+Fb3q1q2+blS+q,G+GbzS-q, (A1 -4) 

s : + s : + s : = S ( s + l ) .  

C22=q+2N2+ N3-S3 

where S ,  = SI is2 and 

q1 = ( q  + NI + N3+ s3 - 1 ) 1 / 2  q2 = ( q  + N2 + N3 - s3 - 1 ) ' / 2  (A1.5) 

(A1.6) 

(A1.7) 

1"' F - (  

) = (( q + N3 + S,)(  q + N3 + s3 - 1 ) ( 4  + N 3  - s3 - 1 )( q + N3 - s3 - 2 )  

( q  + s+ N3)( q - s + N3 - 1)(2q + N3 - 2 )  
( q  + N3 + S3Xq + N3 + s3 - 1 q + N3 - S3) ( 9  + N3 - s3 - 1 )  

( 4  - s3 - 2 ) ( q  + s3 - 1 )  

The remaining operators follow by Hermitian conjugation. 

Appendix 2. The Gaussian corrections H('), H(') 

The following operators are given as functions of the original variables b , ,  b2,  b3,  as 
they appear in the expansion (10):  

I+(')= 2c,(A+B+ + A - B - )  + 2 4 A :  + A!) +2dlAoBo+ d2A: (A2.1) 

I+"' = cl( B: + 85 + 2A+C+ + 2A-C-)  + 3c2(A:B+ + A? B-)  + c3(A!+ + A!) 

+ d , ( B ~ + 2 A o C o ) + 3 d 2 A ~ B o + d 3 A ~  642.2) 
where the complete symmetrisation of the products of non-commuting operators A,,,, 
B,, m = +, -, 0, must be performed. These operators are defined as follows: 

A o = b l + b :  Bo = 2Nl+ N3 + S3 Co=:b1(Nl+N3+S3-1) (A2.3) 

V = U - ' (  b, + b:) +fl- '(b,+ b:) 

X = o - ' ( 2 N , + N , + S , ) + n - ' ( 2 N , + N , - S 3 )  W . 7 )  

A,= V* W B + = X *  Y C , = Z * T  (A2.4) 

( '42.5)  

W = ( 2 / ~ s 2 ) " ~ (  b3 + b:) (A2.6) 

Y =  ( 2 / w f l ) ' / ' ( b ,  + b2)b:+ ( w f l ) - ' / ' S + +  HC (A2.8) 
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Here HC stands for hermitian conjugate. 
The constant coefficients c,, d,, n = 1, 2, 3, are given by 

r( v)n2+nwn r(v)(w2-n2) 
c, = d,  = 

8r( v - n ) r ( 2 +  n)(w +a)” 4r( v - n ) r ( 2 +  n)w ’ 

Appendix 3. Canonical transformation which diagonalises H12 + H3 

where the 2 x 2 real matrices F(*)  are defined as follows: 

F!*) = to..e!*) ‘1 ‘I i, j = 1 , 2  (no summation) 

(A2.11) 

(A3.1) 

(A3.2) 

(A3.3) 

( A3.4) 

(A3.5) 

(A3.6) 

(A3.7) 

(A3.8) 

The parameters w, SZ, K1, K2, K12,  E ,  A,, A’, A3  and A were defined in ( l l ) ,  (16) 
and (19). 
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